
March 1999 The Delphi Magazine 19

Tooltips Under Your Control
by Brian Long

This article is about tooltips, or
hint windows. But don’t worry,

this is not a ‘try the Hint and
ShowHint properties’ article. Nor is
it a ‘you might find the Application
object’s OnHint and OnShowHint
events interesting’ article. And it
certainly is not one of those ‘here is
how to have funny shaped tooltips’
articles (but if you wanted to read
that last article, you could turn to
Issue 16, page 47, and read Hints
With Attitude).

No, none of the above are to be
addressed here. Instead, to get an
idea of what we are to be looking at,
let’s consider the Delphi 4 environ-
ment and how it uses some tooltips
(note that my code works in all
versions).

Delphi Editor
If you type some code in the editor,
and then pause your mouse over
one of the Pascal symbols, the
Tooltip Symbol Insight will kick in,
assuming it has not been disabled.
Once the minor amount of
background compilation has fin-
ished, a tooltip appears roughly
where the mouse is, in much the
normal way. The tooltip contains
information on where the symbol
is defined. So this is a fairly normal
tooltip (of type THintWindow),

whose text content is based on
what the mouse is over.

Now let’s think of another IDE
tooltip. When you type an open
parenthesis after a subroutine or
method name, or press Shift+
Ctrl+Space when the cursor is in a
parameter list, the Code Parame-
ters hint window appears. This
functions a little differently to
normal ones. It remains visible
indefinitely (ie, it doesn’t disap-
pear after a short interval), or at
least until you type the closing
parenthesis, move the cursor, or
switch away to another window.
Also, scrolling the editor window
with the scrollbar causes the
tooltip to move, so it stays in the
same position relative to the code.
Finally, if you shrink the editor
when the tooltip is displayed, it will
automatically disappear when the
editor becomes too small for it.

The Code Parameters window is
of type TTokenWindow, presumably
having extra code to draw the cur-
rent parameter in bold text and
also to deal with overloaded sub-
routine parameters. This hint
window is controlled by custom
code over and above the normal
VCL tooltip code.

Object Inspector
Now let’s try another Delphi 4
tooltip. Take a look at the Object

Inspector. If you move the mouse
over any property or any property
value that you cannot see in its
entirety, another tooltip appears
over that Object Inspector cell dis-
playing the whole value. This
tooltip is a window of type
TPropertyHintWindow. Again, it
exhibits non-standard behaviour
in that it always sits exactly over
one of the cells on the Object
Inspector’s grid, rather than being
at a specific offset from the mouse
cursor. It also does not disappear
until you move the mouse off that
cell, or take focus away from the
Object Inspector.

The Code Parameters window
and the Object Inspector property
hint window are prime examples of
non-standard tooltips that we will
try to emulate. A tooltip that goes
where we want it to, and stays
there until we want it to go, and a
tooltip that reveals obscured text
in a control, say a string grid cell,
or a data-aware grid cell. So with
the introduction out of the way, we
will start with the first issue.

Persistent Hint Windows
Let’s take an example requirement
where we have some edit controls
on a form, amongst other things.
The application, for reasons
beyond our control, needs to have
a hint window displayed when any

{ When control gains focus, display the hint }
procedure TForm1.DBEditEnter(Sender: TObject);
var HintRect: TRect;
begin
{ Create instance of currently registered
hint window class }

if not Assigned(HintWnd) then
HintWnd := HintWindowClass.Create(Self);

{ Use current VCL hint colour }
HintWnd.Color := Application.HintColor;
Control := TControl(Sender);
{ How big should it be? }
HintRect := CalcHintRect(Screen.Width, Control.Hint);
with CalcHintTopLeft(Control) do
OffsetRect(HintRect, X, Y);

{ Show it }
HintWnd.ActivateHint(HintRect, Control.Hint)

end;
{ When control loses focus, remove the hint }
procedure TForm1.DBEditExit(Sender: TObject);
begin
Control := nil;
{ Keep object, but destroy underlying window }
HintWnd.ReleaseHandle;

end;
function TForm1.CalcHintRect(MaxWidth: Integer;
const AHint: string; HintWnd: THintWindow): TRect;

{$ifdef DelphiLessThan3}
var
Buf: array[0..511] of Char;

begin
Result := Rect(0, 0, MaxWidth, 0);
{ Ask Windows to do the hard calculation work }
DrawText(HintWnd.Canvas.Handle, StrPCopy(Buf, AHint),
-1, Result, DT_CALCRECT or DT_LEFT or DT_WORDBREAK or
DT_NOPREFIX);

{ Add some breathing room }
Inc(Result.Right, 6);
Inc(Result.Bottom, 2);

{$else}
begin
{ Delphi 3+ makes this method available }
Result := HintWnd.CalcHintRect(Screen.Width, AHint, nil)

{$endif}
end;
function TForm1.CalcHintTopLeft(Control: TControl): TPoint;
const
HintOffset = 4;

begin
{ Where should it go? }
Result := Point(Control.Left + HintOffset,
Control.Top + Control.Height);

Result := ClientToScreen(Result);
end;

➤ Listing 1

20 The Delphi Magazine Issue 43

of the edit controls gains focus.
The hint window must stay visible
for as long as the edit control has
focus. This means that if we switch
to another application, or another
control in the same application,
the hint window must disappear.
Also, if the form is moved, the hint
window must notice this and move
along with it.

The sample project HINTS.DPR on
the disk attempts to meet this
specification. It has four data
aware edit controls connected
through a datasource to some
table. There is also a navigator and
an exit button.

The idea will be to ignore the
normal VCL-controlled hint
window and not use it at all.
Instead, we will manufacture and
control one of our own. The normal
VCL hint window class is
THintWindow, so the form has a data
field of this type called HintWindow.
Also, to keep track of which control
we are displaying a hint for, we
have another field called Control of
type TControl.

The four edits share their
OnEnter event handler, and also
their OnExit event handler (see
Listing 1). The first time one of
them gains focus, the OnEnter event
handler creates an object for
HintWindow to refer to. Rather than
hard-coding the VCL’s THintWindow
type in the constructor call, it uses
the FORMS unit’s HintWindowClass
class reference variable. Hint-
WindowClass starts its life initialised
to THintWindow, but this can be
replaced by anything inherited
from THintWindow. This means if
anyone has installed a more inter-
esting hint window class, this code
will unwittingly benefit from it.

Apart from this, the rest of the
code in this event handler
executes the same for every invo-
cation. The hint colour is set to
match the VCL hint window’s
colour, and the form’s Control field
is set to point at the relevant edit
control. The next step is to work
out the size of the hint window,
based upon the text to display and
font to be used.

This calculation is delegated to
the CalcHintRect method, which in
Delphi 3 and later simply involves a

call to a method of the hint
window. Delphi 1 and 2 don’t sup-
port this method, so the code must
be written out in full.

When we have an appropriately
proportioned TRect, we position it
on screen at the bottom of, and just
to the right of, the control. When
the control loses focus, the OnExit
event handler resets the Control
field to nil and destroys the hint
object’s underlying window
handle, making the hint disappear.

Final Touches
So that covers the basic require-
ments. We also need to deal with
the other issues, moving the hint in
tandem with the form, and making
sure the hint disappears when the
application is switched away from,
reappearing when it is switched
back to.

First of all, the form movement
problem. This is quite straightfor-
ward, in that it involves a simple
message handler for any wm_Move
messages that the form receives. It
recalculates the position of the

TForm1 = class(TForm)
...
private
...
procedure WMMove(var Msg: TWMMove); message wm_Move;

end;
...
procedure TForm1.WMMove(var Msg: TWMMove);
begin
inherited;
{ If we have a control's tooltip showing }
if Assigned(Control) then
with CalcHintTopLeft(Control) do
{ We'll move it }
MoveWindow(HintWnd.Handle, X, Y, HintWnd.Width, HintWnd.Height, True);

end;

hint window and moves it to the
new location (Listing 2).

To deal with the other remaining
issue, an event handler is shared
between both the Application
object’s OnActivate and OnDeac-
tivate events (Listing 3). When the
application is activated or deacti-
vated, assuming we are in a posi-
tion to be potentially displaying a
hint, some code executes to see if
our application has focus. If it
does, then we make sure the hint is
visible, otherwise we hide it.
SetWindowPos is used for this, as
opposed to ShowWindow, so that we
can use the SWP_NOACTIVATE flag to
ensure the hint window does not
receive focus itself (the edit
control must retain focus).

To see if our application has
focus, a routine called Foreground
Task is called. Delphi 3 (and later)
has this routine available from the
Forms unit, but it was not surfaced
in Delphi 1 or 2. When compiling
with those versions, a simplisti-
cally equivalent routine that hope-
fully will do just as well is supplied.

procedure TForm1.FormCreate(Sender: TObject);
begin
{ These two ensure manufactured hints disappear and reappear as appropriate }
Application.OnActivate := ActivateOnOff;
Application.OnDeActivate := ActivateOnOff;

end;
{ Move hint, and hide/show it as specified }
procedure TForm1.MoveControl(Control: TWinControl; ShowControl: Boolean);
const
Visibility: array[Boolean] of Cardinal = (SWP_HIDEWINDOW, SWP_SHOWWINDOW);

begin
with HintWnd do
SetWindowPos(Handle, HWND_TOPMOST, Left, Top, Width, Height,
Visibility[ShowControl] or SWP_NOACTIVATE)

end;
procedure TForm1.ActivateOnOff(Sender: TObject);
{$ifdef DelphiLessThan3}
function ForegroundTask: Boolean;
begin
{ Does the active window map onto some object in this app? }
Result := FindControl(GetActiveWindow) <> nil

end;
{$endif}

begin
if Assigned(Control) then
{ If we lost focus, hide the tooltip. If we gain focus, show it }
MoveControl(HintWnd, ForegroundTask)

end;

➤ Above: Listing 2 ➤ Below: Listing 3

22 The Delphi Magazine Issue 43

Having dealt with these issues,
the program almost works fine.
One last remaining issue is that if
the form is resized smaller, so that
the edit with the hint is no longer
visible, the hint remains visible on
the desktop. This is no good. An
OnResize event handler is required,
and Listing 4 has one that does the
job. If a control has a hint dis-
played, the OnResize event handler
works out whether the control has
disappeared (by checking whether
the top left of the control is within
the form’s client area). If it has
disappeared, the hint is hidden,
otherwise it is displayed.

So there we have the first appli-
cation, with its own customised
and reasonably sensible hints, as
shown in Figure 1.

Text Completion Tooltips
Now on to the next phase. When a
string grid is used to display infor-
mation, sometimes the text in the
cells can be partially obscured. To
make the grid more helpful, as the
mouse is moved over a cell with
partially obscured text it will pop
up a hint window over the cell con-
taining the full cell value. This will
not be done if the user is currently
editing the cell.

In short, we want an OnMouseMove
event handler to execute, contain-
ing all the relevant logic. When the
OnMouseMove event triggers, we
need code to translate from the X
and Y coordinates passed as
parameters into cell coordinates,
so we can then extract that cell’s
text. A TStringGrid has a method

procedure TForm1.FormResize(Sender: TObject);
begin
{ If we have a control's tooltip showing }
if Assigned(Control) then
{ Hide it if the control is no longer visible, else show it }
MoveControl(HintWnd, PtInRect(Rect(0, 0, ClientWidth, ClientHeight),
Point(Control.Left, Control.Top)))

end;

➤ Figure 1

called MouseToCell that fits the bill.
The logic must then establish
whether the text in the cell, when
drawn on the grid’s canvas, is
wider than the cell it is drawn in. If
this is the case, and the cell does
not have its in-place editor sitting
in it, and the application is the fore-
ground application, a hint window
is required.

As before, a THintWindow (or
some user-installed derivative)
object is created if none exists, and
then initialised with sensible
attributes. The grid’s hint is set to
contain the text of the cell in ques-
tion and that leaves the messy
business of working out where it
should go on the screen.

CalcHintRect is the same as
before and calculates the rectangle
needed to contain the tooltip text.
The tooltip needs to be drawn
pretty much at the top left of the
cell in question, so the grid’s
CellRect method is employed.
Assuming the tooltip is not already
on screen in the same place, it is
activated at the relevant location.
Listing 5 shows all the gory details
just described. You can see the
whole thing in HINTS2.DPR.

Testing this code shows one
downfall. If you move the mouse
onto a cell at the edge of the grid, to
produce the hint window, and then

➤ Listing 4

sharply move the mouse off the
grid, the hint window will remain.
So a timer is employed to periodi-
cally validate the hint situation,
and get rid of it if the user has
moved the mouse away (Listing 6).

New TStringGrid Component
I like this new grid functionality so
much that it seems a shame to
have to set it up manually each
time I use it. So to help myself out I
have turned the code used so far
into an approximately equivalent
component, THintStringGrid (List-
ing 7 has some code from this).

procedure TForm1.SGMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

const
TextOffset = 2;

var
Col, Row: Longint;
R, OldR: TRect;
Pt: TPoint;

begin
SG.MouseToCell(X, Y, Col, Row); { Check cell under mouse }
{ If it is a cell, and text is bigger than screen space
and in-place editor not present }

Canvas.Font := Font;
if (Col <> -1) and (Row <> -1) and
(SG.Canvas.TextWidth(SG.Cells[Col, Row]) + TextOffset >
SG.ColWidths[Col]) and not SG.EditorMode and
ForegroundTask then

begin
{ Make sure hint window exists }
if not Assigned(GridHintWnd) then begin
GridHintWnd := HintWindowClass.Create(Self);
GridHintWnd.Color := Application.HintColor;

end;
{ Set hint text }

SG.Hint := SG.Cells[Col, Row];
{ Calculate rect size }
R := CalcHintRect(Screen.Width, SG.Hint, GridHintWnd);
{ Find target location }
Pt := SG.ClientToScreen(SG.CellRect(Col, Row).TopLeft);
{ Tweak position so it is the same as the grid cell
(hopefully) }

{$ifdef DelphiLessThan3}
Inc(Pt.Y);
{$else}
Dec(Pt.X);
Dec(Pt.Y);
{$endif}
OffsetRect(R, Pt.X, Pt.Y);
{ Only draw it if it has moved - compare top-left (could
compare whole rect but hint sometimes grows itself) }

GetWindowRect(GridHintWnd.Handle, OldR);
if not IsWindowVisible(GridHintWnd.Handle) or
not ((R.Left = OldR.Left) and (R.Top = OldR.Top)) then
GridHintWnd.ActivateHint(R, SG.Hint)

end else if Assigned(GridHintWnd) then
GridHintWnd.ReleaseHandle

end;

➤ Listing 5

24 The Delphi Magazine Issue 43

The OnMouseMove event handler
code has been transferred to a
method called DoHint which is
called from a wm_MouseMove mes-
sage handler. One advantage of
writing a self-contained grid-with-
hints component is that the com-
ponent will be sent a cm_MouseEnter
message when the mouse moves
into the control, and a cm_Mouse
Leave message when it is moved
out. So when the mouse leaves the
grid, the cm_MouseLeave message
handler can remove the hint, pre-
cluding the need for a timer.

That said, these messages are
not without problems. TSpeed
Button objects use them as well
when their Flat property is True.
When the mouse enters the speed
button draws itself as a 3D button,
and when it leaves it redraws itself
2D. Unfortunately, if the mouse is
snatched from the speed button,
the cm_MouseLeave message will not
be generated and the button stays
3D. You can test this on the speed
bars in Delphi 3 or later.

New TDBGrid Component
Having proven the principle with a
TStringGrid, let’s now try to do the
same thing with a TDBGrid. The
component will contain exactly the
same extra code as THintString
Grid, but the implementation of

DoHint will be a little different in
this case.

Basically we need to replace the
code that gets the text from the
cell. In the case of a TDBGrid, we
need to read the value of the field
displayed in a cell, taking any dis-
play formatting attributes into
account. Listing 8 (taken from
DBHNTGRD.PAS) shows the result.
You can see that a TDBGriddoes not
have a MouseToCell method, so
MouseToCoord is used instead, along
with some further manipulation
code. Care must be taken when
obtaining the field, as the Options
property of the grid allows the title
row and indicator column to be
optionally removed.

New TListBox Component
Whilst we are on a roll, we may as
well continue. A TListBox gets a
vertical scrollbar when required,
but not a horizontal one. You can
programmatically give a horizontal
scrollbar to a listbox, but maybe it
would be nicer to have the listbox
proactively inform the user of the
full text of an item with a hint
window, as with the grids.

Again, the code in the new com-
ponent is practically the same as

before, with different code to
extract the text from the item
under the mouse cursor.
HINTLIST.PAS contains a working
component, with the different
code shown in Listing 9.

The HINTS3.DPR project uses one
of each of these new components:
see Figure 2. The screenshot has
been doctored so you can see all
three components displaying their
tooltips simultaneously. In prac-
tice, you only see a tooltip when
the mouse is over part of the com-
ponent which contains partially
obscured text.

Final Notes
When compiling this custom hint
functionality into Delphi 1 and 2, a
problem arises. Generally speak-
ing, hints are displayed just off the
client area of the control they are
related to. In the applications pre-
sented here, this is not necessarily
the case: the hints are displayed
within the component, immedi-
ately under the mouse.

The implementation of THint
Window in Delphi 1 and 2 is slightly
lacking in that if you click on the

procedure TForm1.Timer1Timer(
Sender: TObject);

var Pt: TPoint;
begin
GetCursorPos(Pt);
Pt := ScreenToClient(Pt);
if not PtInRect(
SG.BoundsRect, Pt) and
Assigned(GridHintWnd) then
GridHintWnd.ReleaseHandle

end;

THintStringGrid = class(TStringGrid)
private
FHintWnd: THintWindow;

protected
function CalcHintRect(MaxWidth: Integer;
const AHint: string; HintWnd: THintWindow): TRect;

procedure DoHint(X, Y: Integer);
public
procedure CMMouseEnter(var Msg: TMessage);
message cm_MouseEnter;

procedure CMMouseLeave(var Msg: TMessage);
message cm_MouseLeave;

procedure WMMouseMove(var Msg: TWMMouseMove);
message wm_MouseMove;

end;
procedure THintStringGrid.CMMouseEnter(var Msg: TMessage);
var Pt: TPoint;

begin
GetCursorPos(Pt);
Pt := ScreenToClient(Pt);
DoHint(Pt.X, Pt.Y)

end;
procedure THintStringGrid.CMMouseLeave(var Msg: TMessage);
begin
inherited;
if Assigned(FHintWnd) then
FHintWnd.ReleaseHandle; { quicker than Destroy }

end;
procedure THintStringGrid.WMMouseMove(
var Msg: TWMMouseMove);

begin
inherited;
DoHint(Msg.XPos, Msg.YPos)

end;

➤ Listing 7

➤ Listing 6

➤ Figure 2

March 1999 The Delphi Magazine 25

hint window it beeps. This is quite likely to happen, as
the user will wish to select grid cells and listbox items,
so we need to fix this problem. Code exists in the
appropriate projects to install a customised hint class
(TCustomHint) that avoids the problem by being
enabled and claiming to be transparent. Listing 10
shows the code. Again, to read up on the subject of
customising normal VCL hint behaviour, check the
references at the start of this article.

So that’s the end, and hopefully this article may have
prompted some ideas about how to make your applica-
tions a little more helpful. Remember, if you want
tooltips to do something different to the norm, just
ignore the normal VCL support and control them
manually with your own code.

Brian Long is an independent consultant and trainer.
You can reach him at brian@blong.com
Copyright @ 1999 Brian Long. All rights reserved.

procedure THintDBGrid.DoHint(X, Y: Integer);
const TextOffset = 2;
var
Col, Row, LogCol, LogRow: Longint;
R, OldR: TRect;
Pt: TPoint;
GPt: TGridCoord;
OldActive: Integer;
Text: String;

begin
GPt := MouseCoord(X, Y); { Check cell under mouse }
Col := GPt.X;
Row := GPt.Y;
LogCol := Col;
LogRow := Row;
{ Title row needs to be taken account of }
if dgTitles in Options then Dec(LogRow);
{ Indicator column needs to be taken account of }
if dgIndicator in Options then Dec(LogCol);
Text := '';
if (LogCol >= 0) and (LogRow >= 0) then begin
OldActive := DataLink.ActiveRecord;
try
Datalink.ActiveRecord := LogRow;
{$ifdef Win32}
Text := Columns[LogCol].Field.DisplayText
{$else}
Text := Fields[LogCol].DisplayText
{$endif}
finally
Datalink.ActiveRecord := OldActive

end
end;
{ If it is a cell, in-place editor not present, and text
bigger than screen space, and not at design-time }

Canvas.Font := Font;
if (Text <> '') and not EditorMode and ForegroundTask
and (Canvas.TextWidth(Text) + TextOffset >
ColWidths[Col]) and not
(csDesigning in ComponentState) then
{ code much the same as before }

end;

➤ Listing 10

➤ Below: Listing 9➤ Above: Listing 8

{$ifdef DelphiLessThan3}
{ Hint window in Delphi 1 & 2 beeps if you click it.
These modifications fix that }

TCustomHint = class(THintWindow)
private
procedure WMNCHitTest(var Msg: TWMNCHitTest);
message wm_NCHitTest;

protected
procedure CreateParams(var Params: TCreateParams);
override;

end;
procedure TCustomHint.CreateParams(
var Params: TCreateParams);

begin
inherited CreateParams(Params);
Params.Style := Params.Style and not ws_Disabled;

end;
procedure TCustomHint.WMNCHitTest(var Msg: TWMNCHitTest);
begin
Msg.Result := HTTRANSPARENT;

end;
initialization
Application.ShowHint := not Application.ShowHint;
HintWindowClass := TCustomHint;
Application.ShowHint := not Application.ShowHint;

{$endif}
end.

procedure THintListBox.DoHint(X, Y: Integer);
const
TextOffset = 2;

var
Item: Longint;
R, TmpR, OldR: TRect;
Pt: TPoint;

begin
{ Check item under mouse }
Item := ItemAtPos(Point(X, Y), True);
{ If it is an item cell, and text is bigger than screen
space, and not at design-time }

Canvas.Font := Font;
if (Item >= 0) and (Canvas.TextWidth(Items[Item]) +
TextOffset > ClientWidth) and ForegroundTask
and not (csDesigning in ComponentState) then
{ code much the same as before }

end;

	Delphi Editor
	Object Inspector
	Persistent Hint Windows
	Final Touches
	Text Completion Tooltips
	New TStringGrid Component
	New TDBGrid Component
	New TListBox Component
	Final Notes

